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Abstract--Experimental results for axial velocity profiles in free-falling jets of a Newtonian liquid were 
in close agreement with numerical solutions of a mathematical model of the jet. The model was fitted 
successfully to experimental results for jets of fibre suspension by adjustment of an effective suspension 
extensional viscosity. The occurrence of polydispersity in fibre suspensions is discussed, and theoretical 
results for viscosity of aligned fibre suspensions: in uniaxial extension are re-written to take into account 
distributions of fibre length and diameter. These distributions were determined experimentally, and 
predictions based upon them compared with experimental results. It is found that, over a 20-fold range 
of concentration (0.04-0.9 vol%) and a 6-fold change in fibre aspect ratio (0.5 and 3 mm x 10 #m), 
experimental values closely follow the form of concentration dependence exhibited by the close particles 
theory, but lie 15% below its predictions. They also lie 50% below the values given by an interpolation 
formula suggested for use in the intermediate concentration range occupied by the experiments. 
Irregularity in the jet flow was encountered which increased in severity with concentration and ratio of 
fibre length to jet diameter. This is believed to be due to fibre clumping resulting from the impossibility 
of complete fibre dispersion and alignment as concentration approaches 10% of the limiting value for a 
random three-dimensional aggregation of rigid rods. This conclusion means that it may, in practice, be 
very difficult to achieve the conditions upon which the "close particles" theory is based. 

Key Words: extensional flow, extensional viscosity, fibre suspensions, liquid jets, polydisperse suspensions, 
fibre dispersion 

I N T R O D U C T I O N  

The present work formed part of a study of processes for production of felts of aligned short fibre, 
known as "pre-pregs", as precursors in the fabrication of articles from fibre-reinforced plastic. 
For the high performance composites which are of interest, quite precise parallel alignment of fibres 
is required, so that close packing and high volume fractions can be obtained. This alignment is 
brought about using extensional flows of fibre suspensions, and in previous papers (Harris & 
Pittmann 1976; Salariya & Pittman 1980) we have studied a process in which a free-falling sheet 
of suspension is deposited on to  a moving filter s~l~ace, where the suspending liquid is rapidly 
removed as the felt of aligned fibres builds up. In an alternative arrangement, a jet of circular 
cross-section falls onto the filter surface, and it is behaviour of this free-falling jet of fibre suspension 
which is the subject of the present work. Specifically we are interested in predicting its axial velocity 
profile, which requires knowledge of the viscosity of the suspension in uniaxial extension and the 
substitution of this into a fluid mechanical model of the jet. The stability of the jet is also of practical 
importance. 

In addition to their relevance to the process mentioned above, these topics are of more 
general interest. The extensional viscosity of suspensions of slender, rod-like particles has 
received a certain amount of attention, both because of its intrinsic fluid mechanical interest and 
because the suspensions can in some cases be considered as models of polymer solutions. The 
mathematical modelling of liquid jets is of importance in a number of applications, including 
experiments to determine extensional viscosities, and jet instability can cause difficulties in these 
experiments. 

In the following sections we first briefly review previous theoretical and experimental work on 
the viscosity of aligned fibre suspensions in uni-axial extension. A mathematical model of a jet is 
then solved numerically and its predictions compared with experimental measurements on a jet of 
a fibre-free Newtonian liquid. Measurements on jets of fibre suspensions are then reported and the 
mathematical model is fitted to the results to obtain extensional viscosities. Jet irregularities are 
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observed, and some suggestions are offered as to their origin. The composite production process 
which has been referred to requires the use of lower viscosity suspending liquids than have generally 
been used in previous work on extensional viscosities of fibre suspensions, and this seems to 
decrease jet stability. In addition, limits are set on the suspension concentrations which may be 
used, to avoid incomplete dispersion of fibres and loss of the desired alignment pattern. These limits 
put the present experiments in an intermediate range of concentrations, between those for which 
successful theoretical predictions of extensional viscosity exist. The present results are therefore of 
interest in providing an indication of suspension behaviour in this range, which is of some practical 
importance. 

PREVIOUS WORK ON ALIGNED FIBRE SUSPENSIONS 
IN EXTENSION FLOW 

Theoretical results f o r  extensional viscosity 

In a uniaxial extensional flow of fibre suspension, and where it is assumed that fibre axes are 
parallel to the principal axis of fluid strain, the bulk stress in the suspension can be expressed 
(Batchelor 1971) as 

tr u = - -P6  u + 2# eij -Jr" 3(pipj - ~ 6 u) #ell 2, [I] 

where the last term is the deviatoric stress component due to the suspended particles. Here p is 
a unit vector along the particle axis and/~ is the Newtonian viscosity of the suspending liquid. For 
the case of a dilute suspension of particles 2 is given by 

~di, 

where the summation is over all particles, p, 
radius R, 

where 

a n  

p 

in unit volume. For uniform particles of length 21 and 

and 

or, for a suspension of identical particles, 

2 12 

1 
E 2/" [3] 

In 
R 

Q(E) is obtained from slender body theory as 

1 + 0.640E 
Q(e) = 1 - ~  + 1.659 & + O(~3). [4] 

The criterion for diluteness of a suspension with n particles per unit volume is 

nl3E << 1. [5] 

For more concentrated suspensions, where the average interparticle spacing is h, a cell model gave 
the following: 

4 n ~  l i b ) .  [6a] 2el = -~- In ' 

h = (2nl)-½. 

[6b] 

l 2 
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Validity of equations [6] requires 

R <<h <<l [7] 

and the relative error is expected to be of order [ln(h/R)] -I. 
For intermediate conditions, Batchelor (1971) proposed 

4~ _ l n ( / ~  ) _  1.5, [8] 

which reduces to the spheroidal particle version of [2a] when h >> 1, and to [6a] as h/l  ~ 0 and 
R/h -* O. The assumption of parallel particles restricts the result to the case l << r, where r is the 
radial coordinate of the particle centre referred to the origin of the sink (or source) flow. 

The theory has been extended by James & Saringer (1980) to take account of the conver- 
gence of streamlines in a spherical sink, though still with the use of batchelor's one-dimensional 
solution for the velocity field around the particle. A more substantial extension has been 
undertaken by Goddard (1976, 1978) to take account of non-Newtonian behaviour of the 
suspending medium. 

Modelling of fibre suspensions in more general flow fields has recently advanced significantly 
(Dinh & Armstrong, 1984; Lipscomb et al. 1988). Extensional components of the flow, however, 
are often dominant, because resistance to deformation is relatively very high there. Slender particles 
tend rapidly to align along streamlines, so the extensional vicosity of aligned fibre suspension 
remains a topic of considerable interest. 

Experimental 

There have been a number of experimental tests of the Batchelor (1971) theory. Mewis & Metzner 
(1974) determined extensional viscosities by measuring thrust on a spinnaret. Suspensions of 
glass fibre in a liquid with Newtonian viscosity 283 P were used. Parameter values and results are 
summarized in table 1. In experiments 1-4, experimental values differ from the close particles theory 
by -9 .7  to 18.2%. There seems to be no correlation between these departures and values of the 
parameters h/1 and R/h, which determine the applicability of the theory. These parameters have 
similar values in experiment 5, but the experimental result is now 29.4% low. We wonder whether 
this is due to breakage and length reduction of the long (12 mm) fibres used in this experiment. 
The following experimental problems were noted by Mewis & Metzner (1974). Difficulty in 
dispersing fibres into suspension limited concentrations to those shown. "Draw-resonance" 
occurred, leading to fluctuations in thrust and jet diameter; this was more pronounced when using 
longer fibres and higher concentrations. Interparticle spacing was in some cases quite large 
compared with the jet diameter. Thus, a proportion of the jet cross-section adjacent to the surface 
could be considered free of fibres, with a resulting reduction in stress levels. The "fibre,free" region 
varied from 7 to 13% of the cross-section at 0.1% concentration and from 21 to 30% at 1% 
concentration. No corrections were applied to measured stresses for these effects. Fibres within 

Table 1. Summary of experimental work on the extensional viscosity of aligned fibre suspensions 

Reference 

Mewis & Metzner (1974) 

Weinberger (1970) 
Kizior & Seyer (1974) 

21 C I h R 2d 
(mm) (vol%) R 7 h ,~,, [8] 

3.10 0.930 282 0.074 0.048 51 56.45 
6.375 0.099 586 0.108 0.016 17.5 18.74 
6.375 0.287 586 0.064 0.027 74 62.59 
6.375 0.890 586 0.036 0.047 260 231.54 

12.065 0.096 1259 0.052 0.016 59 83.56 
0.2 1.3 57 0.27 0.064 9-10 3.5 
1.27 0.090 85 0.987 0.024 All 0.46 
1.27 0.185 85 0.688 0.034 ~2~ + 2 0.80 
1.27 0.278 85 0.562 0.042 1.27 
2.54 0.093 170 0.485 0.024 1.47 
2.54 0.185 170 0.344 0.034 3.20 
3.81 0.093 255 0.323 0.024 3.31 
5.08 0.093 340 0.243 0.024 5.88 

(A - ;!.d)/& i 
(%) 
-9 .7  
-6 .6  

+ 18.2 
+ 12.3 
- 29.4 

UMF 16/~L 
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each sample were considered effectively identical, and no measurements of fibre dimensions were 
reported. A technique similar to that of Mewis & Metzner (1974) had earlier been used by 
Weinberger (1970) and Weinberger & Goddard (1974) in measurements on suspensions of glass fibre 
in silicone oil (1025 P) and Indopol (205 P). The parameters shown in table 1 indicate that these 
experiments are outside the range of validity of the close particles formula, as noted by Batchelor 
(1971). However, the experimental result of about 9 agreesquite well with the value of 8.6 from the 
formula proposed by Batchelor for interpolation between the dilute and close particles cases. 

Kizior & Seyer (1974) used a different technique in which the thrust of a jet issuing from a 
sharp-edged orifice was measured. Interpretation of the results relies upon knowledge of the flow 
kinematics upstream of the orifice. Viscose rayon fibre was used in sugar solutions of 1.8 and 0.52 P. 
From the information provided one can derive the parameters shown in table 1. Values of h/l are 
rather large for the close particles formula to apply, and experimental results were found to equal 
approximately 2cl + 2 over the range studied; i.e. values seemed not to tend to zero as 2eL becomes 
small. It was suggested that the discrepancy resulted from an incorrect assumption about flow 
upstream of the orifice. 

Chan et al. (1978) have presented data on the extensional viscosity of a high density polyethylene 
melt loaded with 9 and 22 vol% of glass fibre. Goddard (1978a, b) found that agreement of this 
data with the Batchelor-Goddard theory was not good, and this led White & Czarnecki (1980) to 
reconsider the experiments. They concluded that fibre lengths were significantly less than the 
nominal values which had previously been assumed, due to breakage during processing. Length 
distributions were obtained for processed materials and a number of lengths means evaluated, 
namely 

L,, ZN,  L, Ew = ZNiL~ Lz ZNiL~ 

= E,N~ ' Z N i L  i ' - ZN~L~'  [9] 

where N~ is the number of fibres in the sample of length L ,  They suggest, without explanation, 
that 12 in [6b] should be replaced by ¼E~Ew. However, it was found that best agreement with theory 
was obtained using ~(L~) . 1  - 2 

In summarizing the experimental work one can say that the most conclusive test of theory is the 
comparison of the close particles formula with the results of Mewis & Metzner (1974). Agreement 
is generally satisfactory, but given the strong dependence of 2 on the particle aspect ratio it is clearly 
necessary to recognize that suspensions are likely to be polydisperse, and to determine fibre 
dimensions in the suspensions actually used. In a number of other works the experimental 
conditions lie between the conditions under which either the close or dilute suspension results are 
expected to hold. In this category, the results of Kizior & Seyer (1974) are rather inconclusive, and 
only a single point is available from Weinberger (1970). As these intermediate conditions are of 
some practical importance, the present work aims to provide some data in this region. 

POLYDISPERSE FIBRE SUSPENSIONS 

Occurrence o f  polydispersity 

Our experience has been that glass, carbon fibre etc. chopped to a nominal length, generally 
shows a significant spread of lengths. In addition, a less significant variation in diameters occurs, 
due to fluctuations in the manufacturing process. The more important source of polydispersity, 
though, is the reduction of fibre length due to breakage during preparation of suspensions or other 
processing, and it is appropriate to discuss this a little further. In view of the high ultimate tensile 
strength of most fibres it is very unlikely that they would be broken by tensile stresses induced by 
an extensional flow parallel to the fibre axis. However, in other situations, fibres will rotate, and 
may bend as they do so; it is the stresses induced by bending which are likely to cause breakage. 
Salinas & Pittman (1981) studied the bending and breaking of fibres as they rotate in a simple shear 
flow. From thin-rod theory the dimensionless critical radius of curvature at which a fibre breaks 
is equal to the ratio of its Young's modulus and ultimate tensile strength: 
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The minimum dimensionless curvature of a fibre as it rotates in the simple shear, with shear rate 
~;, can be expressed as a function of a dimensionless stiffness number (Salinas 1981) s*, 

( ~ ) ~  =f(s*), s*= ~I~(I/R)"E [II] 

Thus, for a given material (E/T fixed), a critical value S~k  is defined, such that if s* < S~',~k, then 
breakage occurs. This in turn implies that at critical breaking conditions the fluid shear stress is 
inversely proportional to the fourth power of the fibre aspect ratio, 

R 4 
(~#)b~k OC ( 7 ) ~  ~ • [12] 

The difficulty of forming or processing a suspension without breaking fibres is thus seen to increase 
very rapidly with the fibre aspect ratio. 

During processing, fibres which pass through high shear stress regions will break, but processing 
will not usually continue long enough for all fibres to pass through these regions, and a polydisperse 
suspension will result. 

Theoretical results for extensional viscosity of polydisperse aligned fibre suspensions 
Batcbelor's (1971) results for stresses in uniaxial extensional flow of aligned fibre suspensions 

are easily re-written to take account of a distribution of fibre lengths and radii. Introduce 
differential distribution functions f ( l )  and g(R) for length and radius, such that the fraction of 
fibres with half length l', 1 <<. l '  <<. 1 + 61, is f(l')61 etc. and 

f0 fo f ( l )  dl = g(R) dR = 1. [13] 

When polydispersity has occurred through fibre breakage some correlation may exist between 1 
and R, since critical breaking conditions depend on the aspect ratio. However, in practice, this 
would be difficult to quantify and we shall assume independent distribution functions as given 
above. 

For the dilute suspension case, replace the summation in [2a] using the distribution functions, 
and introduce n, the number of particles per unit volume: 

4rr &.=-(nfoffPEQ(E)f(l)g(R)dldR. [14] 

The volumetric concentration is expressed as 

;; fo C = 2~n If(l) dl R2g(R) dR [15] 

and substituting for n from [15], into [14]: 

&. ~c ff f: l~EQ(E)f(l)g(R)dl dR 
= [16] 

fflf(l)dlffR2g(R)d" 
In practice the distributions will be obtained as histograms rather than continuous functions. 
Hence, introduce f ,  for the fraction of fibres with half length I in the range 

AI AI 
l , ,-~- < 1 < 1, + ~-,  [17] 

and gp for the fraction with radius R in 

_ ~  AR [181 Rq-- < R < Rq + '2 ' 
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then the ratio of integrals in [16] is evaluated approximately as 

E • l~EpqQ(Et, q)fpgq 
q P [t9] 

Z lpfpE RZqgo 
P q 

For the close particles case it is first necessary to evaluate the mean interparticle spacing h, for use 
in the cell model. One would not expect there to be any correlation between the separation of the 
axes of a pair of fibres and the lengths of those fibres. The mean interparticle spacing is therefore 
calculated simply on the basis of the total length of all fibres in a unit volume of suspension, as 
for the uniform fibres case, but now taking into account the length distribution. (It would 
presumably be possible to make use of a statistical distribution of h values, both for the mono- 
and polydisperse cases, but given the approximations inherent in the cell model, this does not seem 
justified). Thus, the length of all particles in a unit volume is 

n 2lf(l ) dl [201 

and the average number of particles piercing a unit area perpendicular to the direction of particle 
alignment is the reciprocal of this quantity. The average interparticle distance is then of order h, 
where 

1 
h 2 = [21] 

f0 2n lf(l ) dl 

Substituting for n from [15], 

[ f0 1 h = R2g(R) dR = R ...... . [22] 

Writing h in this form, and introducing the distribution functions to [6a] we obtain, after 
substitution for n in terms of C, 

f(l)g(R) dl dR 

2c, = ~ C R [231 

In the same way as for [16] the ratio of integrals may be approximated by 

n ~ ?  ~qq [24] 
Et, Y.ER e  
P q 

For particles of uniform radius, the averaging here corresponds to the use of Lz L,,, as proposed 
by White & Czarnecki (1980). 

The interpolation formula, [8], can be re-written as 

f f  fo ~ 13f(l) g(R) dl dR 

2 [251 )~int = ~ C , ~ ~ , 

j lf(l) d l f  R~g(R) 
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with the integrals evaluated as 

and h is given by [22]. 

l Lg, 
E E  /21\  ~ 21\ P ' l n~ ,~ - -~J - - ln~ ,~ ) - -1 .5  

E Ipfp E R~gq 
p q 

[26] 

MATHEMATICAL MODELLING OF THE JET 

Equation of motion 
Modelling of a jet or spin line has been discussed in detail by Matovitch & Pearson (1969), 

and the model used here corresponds to their zeroth-order approximation, which is expected 
to hold well except close to the origin of the jet. The following assumptions are made: 
isothermal, steady flow of a fluid with constant density, p, and surface tension, or. Referring to a 
cylindrical polar coordinate system with the z-axis coincident with the jet axis, it is assumed that 
v, = vo = 0 and Oa/~z << 1, where a is the jet radius. The resulting non-linear equation for the jet 
velocity is 

Or: FO2Vz 1(C3V:~21  o~½1 0v, [27a] 
PVz~z =pg + 31Z'LOz2 v, kOz,I j 2Q½v~ OZ' 

where for the case of an aligned fibre suspension, it follows from [1] that 

p, = #(1 + 2), [27b] 

where # is the carrier liquid viscosity. 
A first boundary condition can be defined at a suitable point on the jet axis by 

z = 0, v, = V0, [28] 

where V0 is, in practice, an experimentally determined flow velocity at a convenient level in the 
jet. 

A second condition is provided by noting that at large z, velocity tends to the free-fall value 

: ~ o o ,  v,---* ~ / ~ .  [29] 

Numerical solution 
The surface tension term in [25] is not negligible in the present work, so the analytic solution 

due to Clarke (1986), is not applicable. Equation [27a] was therefore solved numerically using 
Merson's fourth-order Runge-Kutta method. To obtain convergence of the "shooting" method, 
it proved necessary to integrate in the negative z-direction with initial condition of the form 

z f Z ,  v~=V,, 

where V~ is an estimated value, together with from [29], 

z = Z ,  ~ z =  . 

[30] 

[31l 

Vz was adjusted iteratively using the secant method to match the experimental value at 
z --0, according to [28]. The  assumption that Z is large enough for the free-fall acceleration 
to apply sufficiently closely was checked by repeating the solution for different values of Z. 
This solution procedure was previously used by Salariya (1977) in related work on free-falling liquid 
sheets. 

In practice, velocities at z -- 0 were of the order of I0 cm s-1 and solutions were matched to these 
values within 10 -4 cm s -I. Z was chosen as 50 cm; reducing the value to 30 cm altered the computed 
value at z ffi 0 by < 3%. The integration step size was 0.0125 cm, and this gave results accurate 
to five significant figures. 
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EXPERIMENTAL APPARATUS AND PROCEDURE 

Apparatus 

In the equipment to produce free-falling jets, liquid is transferred at room temperature by a 
variable-speed peristaltic pump from a 51. reservoir, where temperature is measured, via a damping 
vessel to a vertical glass tube which is sufficiently long (50 cm) to eliminate swirling and establish 
laminar, parallel flow. At its lower end the tube tapers gradually to the orifice, which is ground 
precisely circular. Tubes with orifices of 2, 4 and 8 mm nominal dia were constructed. A precisely 
ground tool steel rod of 3.57 mm dia is mounted parallel to the jet axis, and is scribed at 1 cm 
intervals to provide a vertical scale. 

Preparation of solutions and suspensions 

Aqueous solutions of o-glucose were prepared, and their viscosity, surface tension and density 
obtained. Weighed samples of carbon fibre were dispersed to give suspensions of known 
concentration, assuming the manufacturer's value for the fibre density of 1870 kg m -3. Dispersion 
was carried out using a disc stirrer at 70 rpm for at least 1 h, followed by at least 5 h de-aeration 
under vacuum. 

Determination of fibre size distributions 
Samples for fibre length determinations were prepared by gently squeezing a little suspension 

between microscope slides and photographing the trapped fibres together with a graticule having 
divisions of 0.01 cm. The negatives were projected, giving a magnification on to the screen of 
approx. 90:1 and lengths were measured using dividers and a scale. Typically about 200 
measurements were used to generate a length distribution. Fibre diameters were measured using 
a Quantimet image analyser, at a magnification of 1500. 

Jet diameter measurement 
The jet and reference rod were photographed simultaneously using flash with back lighting 

behind a diffuser. Negatives were projected, giving a magnification of approx. 40: 1 on the screen. 
Jet and rod diameters were measured, together with the separation of the vertical scale marks on 
the rod. According to these measurements, vertical and horizontal scales in the projection pictures 
differed by < 1%. 

RESULTS AND DISCUSSION 

Axial velocity profiles in jets of fibre-free liquid 
Table 2 summarizes conditions for experiments carried out with fibre-free liquid. Figure 1 shows 

a comparison between computed and experimentally measured axial velocities. The origin for the 
axial coordinate is taken at about 1 dia below the orifice, to exclude the region where simptying 
assumptions used in the mathematical model would be expected to fail. Scatter in the experimental 
values in small and they lie about 2.5% below the computed values. Results for the other five runs 
showed a similar pattern with experimental values falling up to 4% below computed ones. The 
reason for this apparently systematic trend is not known; it may be due to a small effect of air drag 
on the jet, but was not considered important enough to pursue further. Overall the results provide 
reassurance on the validity of the computed values and the accuracy of the physical property data 
and experimental velocity measurements. 

Table 2. Experiments on fibre-free liquid 

Orifice Liquid Velocity at Liquid 
dia viscosity orifice density 

(cm) (N s m - 2) (cm s - ' ) (kg rn - 3) 

0.2 0.389 9.42 1323 
0.2 0.482 3.38 1327 
0.2 0.717 11.16 1335 
0.4 2.757 6.96 1337 
0.4 3.441 4.50 1372 
0.8 1.852 25.85 1359 
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Figure 2. Expe r imen ta l  instantaneous axial velocity profile 
in a jet of suspension. 2l  = 3 mm nominal, C = 0.1 v o l % ,  

carder liquid/a = 6.1 P, orifice dia = 4 mm. 

Figure 1. Comparison of computed ( ) and experimental 
( 0 )  axial velocities in a free-falling jet of Newtonian liquid. 

Orifice dia = 4 mm, liquid viscosity = 34.4 P. 

Axial velocity profiles for jets of fibre suspension and jet irregularities 
Table 3 shows details of eight experiments carried out with fibre suspensions. It was 

immediately apparent that in some of these the jets no longer showed the smooth profiles obtained 
with fibre-free liquid; diameter fluctuations occurred in a roughly periodic way, increasing in 
amplitude with distance from the orifice. Figure 2 shows the instantaneous axial velocity profile 
for the worst case, where an extensional viscosity of the suspension could not be determined. 
Jet irregularities increase with fibre concentration and fibre length, but appear to decrease with 
orifice diameter (see table 3). The phenomenon seems to be distinct from the "draw resonance" 
which is familiar in spinning. Irregularities in converging flow towards an orifice have been 
widely observed in fibre-loaded thermoplastic melts, thermoset resins and other viscous liquids 
containing fibres. Gibson (1985) and Murty & Modlen (1977) described fibre jamming at the orifice 
and Gibson gives an expression for a critical concentration based on simple geometrical 
considerations. Crowson & Folkes (1980) noted pressure fluctuations in capillary rheometry 
of fibre-loaded resins when fibre length exceeded capillary diameter. Akay (1982, 1983) also 
observed pressure fluctuations which were associated with the converging flow of suspension 
into the capillary, and were distinct from stick-slip instabilities which can occur within the 
capillary. It seems that a range of phenomena may be involved in these observations, but an 
explanation consistent with observations in the present work is based on the fact that dispersion 
and fibre alignment is more difficult at higher concentrations of  long fibres. Incompletely dispersed 

Table 3. Experiments on fibre suspensions a 

h R 2l  C D p 
(mm)  (%)  (mm)  (P) l h AA Jet  2cj 2=x ~ 

3 0.04 8 7.66 0.21 0.016 0.17 2 1.796 1.48 
3 0.05 4 8.87 0.19 0.018 0.27 3 2.302 1.84 
3 0.10 4 6.10 0.13 0.025 0.10 4 5.000 - -  
0.5 0.14 8 12.44 0.19 0.022 0.13 0 0.314 0.35 
0.5 0.30 8 12.44 0.29 0.045 0.06 0 0.746 0.50 
0.5 0.90 8 13.29 0.22 0.071 0.04 0 2.657 2.36 

aKey: 21 = nominal fibre length; C = suspension volume concentration; D = orifice dia;/z = carrier 
liquid viscosity; h = interparticle spacing; R = particle radius; AA = fraction of the jet cross- 
section "fibre-free", mean over the jet height; j e t  = jet quality, 0--smooth, 5--highly irregular; 
2cl = theoretical close particles result, [24, 25]; ge~ p = experimental results corrected for fibre-free 
area, using I / ( 1 - 0 . 5  AA). 
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Figure 3. Carbon fibres, 3 mm x 9 pm, in a sheet of suspension falling from the slot at the base of a 
converging wall channel. (a) C = 0.02 vol%, (b) C = 0.05 vol%, (c) C = 0.2 vol%, (d) C = 0.4 vol%. 

clumps of  fibres may occur leading to periodic partial j amming  of  the orifice and irregular flow 
in the jet. Harris  & Pi t tman (1976) found  that  fibre al ignment b rought  about  in a converging flow 
was impaired at concentra t ions  9 0 . 2  vo l% for 3 m m  x 9/~m fibres, and 1 vo l% for ½mm fibres. 
Figure 3 shows pho tographs  obtained by Harris  (1972) o f  3 m m  fibres in the free surface liquid 
sheet falling f rom the base o f  an al ignment channel. At  0.2 vol% the fibre distribution is patchy,  
while at 0.4 vo l% clumping is clearly evident. Whilst  the use o f  dispersing agents improved the 
suspension quality a little, a limit seemed to be set by purely geometrical factors. Evans & Gibson 
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(1988) have shown that the maximum concentration attainable in three-dimensional random 
aggregations of rod-like particles is given by 

Cm~ = k R, k ~ 5. [32] 

The limiting concentrations found by Harris & Pittman (1976) both correspond to about 0.07 
Cm~, lending support to the idea that they involve similar degrees of fibre-fibre interaction. Folgar 
& Tucker (1984) found significant fibre-fibre interactions in cylindrical Couette flow at concen- 
trations between 0.1 Crux and 0.5 Cm~x. Steady-state orientation distributions were apparent, with 
the direction of principal alignment offset from the streamline direction, in constrast to dilute 
suspension theory which predicts periodic variation of the orientation distribution. It is clear that 
in this concentration region fibre alignment is not predicted well, assuming unhindered rotation. 
The worst jet irregularities occurred in the present work with a 0.1 vol% suspension of 3 mm fibres; 
i.e. at half the limiting concentration mentioned above. This is to be contrasted with the smooth 
jets obtained with suspensions of ½mm fibres at 0.9 vol%--approximately equal to the limiting 
concentration. The explanation may lie in the relationship between fibre length and orifice 
diameter--a rather poorly dispersed suspension of 3 mm fibres being more likely to cause incipient 
jamming of the 4 mm dia orifice. 

Extensional viscosities of suspensions 

Effective extensional viscosities were found by iterative adjustment of #~ in [26] to minimize 
the standard deviation of experimental velocity values from the computer profile. Precision was 
about + 1 P. Figure 4 shows how by the appropriate choice of #s, the numerical solution can 
be fitted to experimental results. The small discrepanacy, noted above, between the computed 
and experimental velocity profiles for a fibre-free liquid corresponds to possible errors in 

< 0.5 P. The effective values of #s were then corrected to make some allowance for the 
"fibre-free" fraction of the jet cross-sectional area, AA. By the "fibre-free" region, we mean the 
outer annulus of the jet cross-section, with radial width equal to the mean interparticle spacing, 
h. In reality, of course, fibres are present in this region--the' term "fibre-free" is based on an 
idealized view where fibre centres are arranged on a regular grid of side h. Fibres in this surface 
layer make a smaller contribution to stress levels than fibres deep within the suspension. Following 
Mewis & Metzner (1974), we assume that they have about half their region of interaction with other 
fibres intact, and therefore expect their contribution to particle stresses to be reduced by 50%, 
leading to a reduction over the whole jet cross-section by a factor (1-0.5 AA). The extensional 
viscosities are then multiplied by the reciprocal of this factor, to apply a correction for the surface 
effect. 

The resulting values, 2cxp, are shown in table 3. AA in the reported data are < 0.3, leading to 
corrections ranging from 2 to 16%. Thus, although there is inevitably some uncertainty in the 
correction procedure this will not have a large effect on the results. 

Figures 5a and 5b show typical experimental fibre length and diameter distributions obtained 
for a processed suspension. Significant Variations about median dimensions are observed, and mean 
values of length and diameter differ from the nominal fibre dimensions. 

~ta 

51o 

I I I J 
0 0.5 1.0 1.5 2.0 

z (crn) 

Figure 4. Fit  of  computed ( ) to experimental ( e )  axial velocities in a jet of suspension, by choice 
of the effective suspension viscosity. /~, = 4 4 P ,  2 / = 0 . 5 r a m  nominal, C •O.9vol%, carrier liquid 

/~ := 13.3 P, orifice dia = 8 ram. 
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Figure 5b. Diameter distribution of carbon fibres. 

According to the theory that has been reviewed, 2 should be precisely linear with concentration 
for dilute suspensions, and nearly so for "close particles". The pooled results for ½mm and 
3 mm fibres are tested for this dependence in figure 6, by plotting 2exp scaled by the square of 
the aspect ratio, F/_R 2, based on mean dimensions obtained from distributions such as those shown 
in figures 5a and 5b. Over a 20-fold change in concentration, a theoretical "close particles" 
line, based on mean dimensions, provides a good fit to the data, passing through three points 
and grazing the errors bars of the other two. Note that the error bars here refer to the esti- 
mated precision of the fitting process which yields /~s; additional uncertainties arise from the 
jet irregularities described above, and this is no doubt the origin of the discrepancies in the two 
points. 

A more rigorous application of the theory, however, takes into account fibre length and diameter 
distributions, and recalculation of the close particles predictions using [23] and [24] and the 
experimentally determined distributions gives results some 15% higher. We thus conclude that 
the previous agreement was fortuitous, and that our results, in fact, lie 15o  below the close 
particles theory predictions. This, nevertheless, quite close agreement may be surprising in view of 
the fact that experimental conditions correspond to 0.016 ~< R/h <~ 0.071 and 0.13 ~< h/l <~ 0.29, 
whereas the theory is expected to hold well only when R/h << 1 and h/l<< 1. Under experimental 
conditions the expected relative errors [In(R/h)]-' in the stress generated by a fibre are between 
25 and 40%. 

On the other hand, the criterion for dilute suspensions, nl3E<<l, is clearly not met, with 
experimental values of nl3E lying between 0.1 and 1.0. In this intermediate range, use of the 
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Figure 6. 2 Sealed by [2/)I2 vs concentration. Experimental values L,~p are shown with error bar I; - - -  
close particles theory based on mean fibre dimensions; close particles theory based on length and 

diameter distributions; - -  - 0.5, - - - 3, interpolation theory for 0.5 and 3 mm fibres, respectively. 
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interpolation formula, [8], [25] and [26], has been suggested. The resulting values, based on 
experimental length and diameter distributions are also shown in figure 6, and are seen to lie 
substantially above both the experimental results and the close particles theory. Previous results 
in the intermediate range are due to Kizior & Seyer (1974), whose technique may have been affected 
by uncertainties; and to Weinberger (1970), who found quite good agreement with the interpolation 
formula prediction. However, only a single data point was available, and his finding contrasts with 
the present work, where five points lie on a line about 50% below the interpolation formula values. 
The reason for this discrepancy remains to be explained. 

There remains, though, the fact that our experimental results lie not only below the interpolation 
formula, but also about 15% below the close particles predictions, taking into account length and 
diameter distributions. We believe this may be as a result of the incomplete fibre dispersion 
postulated above, which hinders complete attainment of the parallel fibre alignment upon which 
the theory is based. 

CONCLUSION 

Significant flow irregularities were observed in free-falling jets of fibre suspension, the effects 
being more pronounced at higher concentrations and for larger fibre length to jet orifice diameter 
ratios. Concentrations approached 10% of a proposed limiting value for random three-dimensional 
aggregations of rigid rods, and it is suggested that under these conditions complete fibre dispersion 
cannot be achieved, resulting in fibre clumps which disrupt the jet flow. Evidence for this is provided 
both by the jet irregularities which have been observed, and by direct observation in the 
photographs of fibre suspension in figure 3. 

Despite this difficulty, results were obtained for extensional viscosity of the suspension, by fitting 
a mathematical model of jet flow to experimental observations. This technique is experimentally 
simple, and free from complications, such as "Bourdon tube" effects (Becraft & Metzner 1988), 
in spinning equipment previously used for extensional viscosity measurement. Extension rates and 
stresses, however, are not easily varied over a wide range, but this is of less importance in 
measurements on fibre suspensions in Newtonian media, where extensional viscosity is predicted 
and found to be independent of extension rate. 

Theoretical results due to Batchelor are re-written to take account of fibre length and diameter 
distributions. The experimental results lie about 15% below the predictions of the close particles 
theory, taking into account experimentally determined fibre length and diameter distributions. 
They also lie about 50% below the predictions of an interpolation formula proposed for use in 
this region. 

Taking into account fibre length and diameter distributions alters predictions by 15%, as 
compared with those based on mean fibre length and diameter, A distribution of fibre 
lengths arises primarily through fibre breakage, the critical fluid shear stress for fibre breakage 
varying as the fourth power of the aspect ratio. The relatively small effect of length distri- 
butions in the present work is as a result of care taken in forming and handling suspensions, 
to minimize fibre breakage. Theory predictions based on nominal fibre lengths differed by up 
to 30% from values based on measured length distributions, illustrating the importance of 
determining lengths experimentally. The apparently rather low values for extensional viscosity 
in the present work may result from incomplete fibre dispersion, and for practical purposes we 
would recommend use of the close particles formula rather than the interpolation, in the region 
of the experimental conditions, 0.02 < R/h < 0.07, 0.1 < h~ < 0,3. A discrepancy between the 
present results and a single higher value due to Weinberger (1970) remains, however, to be 
explained. 

Finally, we note the importance of fibre-fibre interactions in semi-concentrated suspensions. 
Present results and references cited indicate that rotation is hindered and the state of parallel fibre 
alignment, which forms the basis of the close particles theory, may not be fully achieved in practice. 
This has implications for predictions of extensional viscosities, and for other treatments of fibre 
suspension rbeology which make use of the close particles theory. 
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